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Abstract

In this paper, we study the convergence of a family of iteration
methods to solve nonlinear equations in the complex plane. Two
analysis of convergence are provided. We give a Kantorovich-type
convergence theorem under mild differentiability conditions with er-
ror analysis.
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1 Introduction

Hernández and Salanova [5] define a new family of iterative processes of
second order depending on a real parameter α ≥ 0 by

xα,n+1 = xα,n − h(xα,n)

h′(xα,n)
(1 + αh(xα,n)) , n ≥ 0,

to solve a nonlinear scalar equation h(x) = 0. A thorough analysis is realized
in [5], it is shown that an iterative processes of above family can always be
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applied to solve h(x) = 0 and this process is faster than Newton’s method.
They also give a Kantorovich theorem to prove the convergence in the com-
plex plane.

We continue with the analysis of the convergence in the complex plane.
We consider the problem of solving the equation

f(z) = 0 (1)

where f : D ⊆ C → C is an holomorfic function on some open convex domain
D. Let z0 = zα,0 ∈ D and be the family of iterative processes defined in [5]
for all n ≥ 0 by

zα,n+1 = Fα(zα,n) = zα,n − f(zα,n)

f ′(zα,n)
(1 + αf(zα,n)) , (2)

where α ≥ 0, to solve equation (1). This family of iterations includes the
Newton’s method as a specific choose of the parameter (α = 0).

On the one hand, we study the Kantorovich convergence of family (2) by
means of majorizing sequences ([7],[9]) where function f satisfy a Lipschitz-
type condition. We also give error bound expressions depending on the real
parameter α.

Let us denote

B(z, r) = {w ∈ C; |w − z| ≤ r} and B(z, r) = {w ∈ C; |w − z| < r}.

2 The Newton-Kantorovich convergence

Hernández and Salanova [5] study the convergence of the family of methods
(2) under standard original Kantorovich conditions [7]. Here we analyse the
convergence of family (2) under milder differentiability conditions. The basic
assumption made is that the first derivative f ′ of f is Lipschitz continuous
in D. Let us assume throughout this section that

(c1) |f(z0)| = a,

(c2) |f ′(z0)| = b,

(c3)

∣
∣
∣
∣
∣

f ′(z) − f ′(w)

f ′(z0)

∣
∣
∣
∣
∣
≤ k|z − w|, z, w ∈ D, k > 0,
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(c4) b − 2ak ≥ 0.

To establish the convergence of (2) and uniqueness of solution, we will
need the following two results. The proof of the first one follows inmediately.

Lemma 2.1 Let α be a fixed real number that satisfies 0 ≤ α <
b − 2ak

8ab
.

Then we have:

(i)

[

b +
4b2α

k
,

b2

2ak

]

�= ∅.

(ii) If N ≤ b2

2ak
, the equation

p(t) ≡ kN

2
t2 − bt + a = 0 (3)

has two positive roots r1 and r2 (r1 ≤ r2). Besides N =
b2

2ak
if and

only if r1 = r2.

Lemma 2.2 Let p be the polynomial defined in (3). Then the sequence

t0 = tα,0 = 0,

tα,n+1 = Pα(tα,n) = tα,n − p(tα,n)

p′(tα,n)
(1 + αp(tα,n)), n ≥ 0, (4)

is increasing and converges quadratically to r1 for all 0 ≤ α <
b − 2ak

8ab
.

Proof. Note that P ′
α(t) ≥ 0 in [0, r1] where

P ′
α(t) = Lp(t) − αp(t)(2 − Lp(t))

and Lp(t) =
p(t)p′′(t)

p′(t)2
[4]. Then by mathematical induction on n, it follows

that tα,n ≤ r1, n ≥ 0.
On the other hand, it is easy to prove that tα,n ≤ tα,n+1 for all n ∈ N and

consequently the proof is completed.

Now we can state an existence-uniqueness theorem.
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Theorem 2.3 Assume that conditions (c1)–(c4) are satisfied and 0 ≤
α <

b − 2ak

8ab
. Then the sequence {zα,n} defined by (2) converges to a solution

z∗ of equation (1) in B(z0, r1)∩D for N ∈
[

b +
4b2α

k
,

b2

2ak

]

. The limit z∗ is

the unique solution of (1) in B(z0, r)∩D where r = r2 +
2(N − b)

kN
. Moreover

|z∗ − zα,n| ≤ r1 − tα,n, n ≥ 0.

So as to show the previous theorem we need the following lemma.

Lemma 2.4 The sequence {tα,n} defined by (4) is a majorizing sequence
of the sequence {zα,n} given by (2), i.e.

|zα,n+1 − zα,n| ≤ tα,n+1 − tα,n, n ≥ 0. (5)

Proof. By mathematical induction, it suffices to show that the following
statements are true for all n ≥ 0:

[In] f ′(zα,n) �= 0,

[IIn]

∣
∣
∣
∣
∣

f ′(z0)

f ′(zα,n)

∣
∣
∣
∣
∣
≤ p′(t0)

p′(tα,n)
,

[IIIn] |f(zα,n)| ≤ p(tα,n),

[IVn]

∣
∣
∣
∣
∣

f(zα,n)

f ′(z0)

∣
∣
∣
∣
∣
≤ −p(tα,n)

p′(t0)
,

[Vn] |z0 − zα,n+1| ≤ tα,n+1.

All the above statements are true for n = 0 by initial hypotheses (c1)–
(c4). Then we assume that [Ik]–[Vk] are true for k = 1, 2, . . . , n. From
general hypotheses and

∣
∣
∣
∣
∣

f ′(z0) − f ′(zα,n+1)

f ′(z0)

∣
∣
∣
∣
∣
≤ k|z0 − zα,n+1| ≤

kN

b
tα,n+1,

we obtain ∣
∣
∣
∣
∣
1 − f ′(zα,n+1)

f ′(z0)

∣
∣
∣
∣
∣
≤ 1 +

p′(tα,n+1)

p′(t0)
< 1.
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Then ∣
∣
∣
∣
∣

f ′(z0)

f ′(zα,n+1)

∣
∣
∣
∣
∣
≤ p′(t0)

p′(tα,n+1)
.

Therefore [In+1] and [IIn+1] are true.
Using Altman technique ([1],[10]) and taking into account (2), we deduce

by Taylor’s formula that

f(zα,n+1) = f(zα,n) + f ′(zα,n)(zα,n+1 − zα,n) +
∫ zα,n+1

zα,n

(f ′(z) − f ′(zα,n)) dz

= −αf(zα,n)2 +
∫ zα,n+1

zα,n

(f ′(z) − f ′(zα,n)) dz.

Taking norms, we have

|f(zα,n+1)| ≤ αp(tα,n)2 +
kb

2
(tα,n+1 − tα,n)2.

Repeating the same process for the polynomial p, we get

p(tα,n+1) ≤ −αp(tα,n)2 +
kN

2
(tα,n+1 − tα,n)2.

As p′(tα,n) ≤ p(t0) = b2 and 1 + αp(tα,n) ≥ 1 we infer that

p(tα,n+1) − |f(zα,n+1)| ≥
(

k

2b2
(N − b) − 2α

)

p(tα,n)2.

Hence
|f(zα,n+1)| ≤ p(tα,n+1), (6)

since N ≥ b +
4b2α

k
.

Consequently [IIIn+1] is true and [IVn+1] follows from an analogous way.
Finally,

|zα,n+1 − zα,n| =

∣
∣
∣
∣
∣

f(zα,n)

f ′(zα,n)
(1 + αf(zα,n)

∣
∣
∣
∣
∣
≤ − p(tα,n)

p′(tα,n)
(1 + αp(tα,n))

= tα,n+1 − tα,n,

then (5) holds and {tα,n} majorizes {zα,n}. Now [Vn+1] is deduced inmedi-
ately.
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Proof of theorem 2.3. The fact that the sequence {tα,n} defined by
(4) majorizes the sequence {zα,n} given by (2) is a consequence of lemma 2.4.
So the convergence of {tα,n} implies the convergence of {zα,n} to a limit z∗.
When n → ∞ in (6), we deduce that F (z∗) = 0.

Moreover, for q ≥ 0, it follows from (5) that |zα,n+q − zα,n| ≤ tα,n+q − tα,n,
and making q → ∞ we obtain |z∗ − zα,n| ≤ r1 − tα,n, n ≥ 0. Besides
|z∗ − z0| ≤ r1 − t0 = r1.

To show the uniqueness of the solution z∗. Assume that there exists

another solution w∗ of equation (1) in B(z0, r) where r = r2 +
2(N − b)

kN
.

Following Argyros and Chen ([2],[3]), we have

f(w∗) − f(z∗) = (w∗ − z∗)
∫ 1

0
f ′(z∗ + t(w∗ − z∗)) dt = 0

and ∣
∣
∣
∣1 − f ′(z0)

−1
∫ 1

0
f ′(z∗ + t(w∗ − z∗)) dt

∣
∣
∣
∣

≤ k
[

|z0 − z∗|
∫ 1

0
(1 − t) dt + |z0 − w∗|

∫ 1

0
t dt

]

< k
(

r1 + r

2

)

= 1.

Therefore w∗ = z∗ follows from
∫ 1

0
f ′(z∗ + t(w∗ − z∗)) dt �= 0.

Notice that Hernández and Salanova [5] give uniqueness of solution of

equation (1) in the ball B(z0,
2a
b
(2 −

√
2)) for the family (2).

Now we get error expressions for the sequence {tα,n} defined by (4). Fol-
lowing Ostrowski [8], we can deduce following error estimates for r1−tα,n, n ≥
0.

Theorem 2.5 Let p be the polynomial given in (3). Assume that p has
two positive roots r1 and r2 (r1 ≤ r2). Let {tα,n} be the sequence given by
(4).

(a) If r1 < r2, let θα =
r1

r2

√
ρα and ∆α =

r1

r2

√
σα. Then

(r2 − r1)∆
2n

α√
σα − ∆2n

α

≤ r1 − tα,n ≤ (r2 − r1)θ
2n

α√
ρα − θ2n

α

, n ≥ 0,
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where ρα =
1

2

[

2 − αkN(r2 − r1)
2
]

, σα =
2 − αkNr2

2

2 − αkNr2
1

, θα < 1 and

∆α < 1.

(b) If r1 = r2, let τα =
1

4
(2 − αkNr2

1). Then

r1τ
n
α ≤ r1 − tα,n ≤ r1

2n
, n ≥ 0.

where τα < 1.

Proof. Let us write aα,n = r1 − tα,n and bα,n = r2 − tα,n. Hence

p(tα,n) =
kN

2
aα,nbα,n and p′(tα,n) = −kN

2
(aα,n + bα,n).

By (4) we obtain

aα,n = a2
α,n−1

2 − αkNb2
α,n−1

2(aα,n−1 + bα,n−1)
(7)

and

bα,n = b2
α,n−1

2 − αkNa2
α,n−1

2(aα,n−1 + bα,n−1)
.

If r1 < r2, denote δα,n =
aα,n

bα,n

to get

δα,n = δ2
α,n−1

2 − αkN(r2 − tα,n−1)
2

2 − αkN(r1 − tα,n−1)2
= δ2

α,n−1φα(tα,n−1).

Taking into account that the function

φα(t) =
2 − αkN(r2 − t)2

2 − αkN(r1 − t)2

is nondecreasing in [0, r1] for all α ≥ 0, we have

σα = φα(0) ≤ φα(t) ≤ φα(r1) = ρα. (8)

Therefore

δα,n ≤ ραδα,n−1 ≤ . . . ≤ ρ
2n−1

2
α δ2n

α,0,
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δα,n ≥ σαδα,n−1 ≤ . . . ≤ σ
2n−1

2
α δ2n

α,0,

and so the first part holds.
If r1 = r2, then aα,n = bα,n. By (7) we deduce

aα,n =
aα,n−1

4
(2 − αkNa2

α,n−1).

Repeating an analogous process to the first part we get

aα,n ≤ aα,n−1

2
≤ . . . ≤ aα,0

2n

and
aα,n ≥ ταaα,n−1 ≥ . . . ≥ τn

αaα,0.

Thus the second part also holds.
From σα ≥ 0, (8) and ρα < 1, it follows that ∆α < θα < 1. Besides it is

obvious that τα < 1. So the proof is completed.

Remark. We give now an optimization result by means of asymptotic
error constant [6]. Let us denote the assumptotic error constant of sequence

(4) by Cα =

∣
∣
∣
∣
∣

P ′′
α(r1)

2

∣
∣
∣
∣
∣
, where Pα is defined in (4). Then, from N ≥ b +

4b2α

k
it follows that

Cα = −kN − 2α(kNr1 − b)2

kNr1 − b
.

It is easy to check that function

hα(N) = −kN − 2α(kNr1 − b)2

kNr1 − b

is nondecreasing. Then the optime value of N in

[

b +
4b2α

k
,

b2

2ak

]

is obtained

for N = b +
4b2α

k
. Therefore we will consider N = b +

4b2α

k
in practical

situations.

Numerical result. To illustrate theorem 2.3, let us consider the equa-
tion f(z) = 0 where f(z) = ez − 1 is an holomorfic function in C. If we
choose D = B(0, 0.5) and z0 = 0.2(1 + i), then

a = |f(z0)| = 0.31259, b = |f ′(z0)| = 1.2214,
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k = 1.34986 and 0 ≤ α < 0.123592.

Taking into account α = 0.1, we have N = 1.66347. Therefore, from the
definition (3),

p(t) = 1.12273t2 − 1.2214t + 0.31259.

This polynomial has two real roots: r1 = 0.411825 and r2 = 0.676065. Hence,
by theorem 2.3, the sequence of iterates {z0.1,n} given by (2) converges to the
solution z∗ = 0 of f(z) = 0 in B(z0, 0.411825) ∩ D, see Table 1. Moreover
the solution z∗ = 0 is unique in B(z0, 1.06981) ∩ D.

Notice that Hernández and Salanova [5] would obtain uniqueness of the
solution z∗ = 0 in B(z0, 0.299837)∩D. Consequently, the uniqueness domain
has been increased considerablely.

Finally, observe that the sequence {z0.1,n} converges to z∗ = 0 faster than
the sequences of Newton’s method {z0,n}, see Tables 1 and 2.

n z0.1,n

0 0.200000000000000+0.200000000000000i
1 0.002463980472679+0.029343451406702i
2 -0.000340904885976+0.000061954839567i
3 0.000000044957044-0.000000016900126i
4 0.000000000000000+0.000000000000000i

Table 1: Process iterative (2)

n z0,n

0 0.200000000000000+0.200000000000000i
1 0.002410647342520+0.037343309184660i
2 -0.000692598436544+0.000098570978707i
3 0.000000235040194-0.000000068293593i
4 0.000000000000025-0.000000000000016i

Table 2: Newton’s method
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