A Note on a Family of Newton Type Iterative Processes

J.A. Ezquerro and M.A. Hernández
University of La Rioja, Department of Mathematics and Computation C/ Luis de Ulloa s/n, 26004, Logroño, Spain

Abstract

In this paper, we study the convergence of a family of iteration methods to solve nonlinear equations in the complex plane. Two analysis of convergence are provided. We give a Kantorovich-type convergence theorem under mild differentiability conditions with error analysis.

Keywords: Nonlinear equations in complex plane, second-order processes, Newton method, Newton-Kantorovich assumptions, majorizing sequences.
Classification A.M.S. 1991: 26A51, 65H05.
Supported in part by a grant of the University of La Rioja.

1 Introduction

Hernández and Salanova [5] define a new family of iterative processes of second order depending on a real parameter $\alpha \geq 0$ by

$$
x_{\alpha, n+1}=x_{\alpha, n}-\frac{h\left(x_{\alpha, n}\right)}{h^{\prime}\left(x_{\alpha, n}\right)}\left(1+\alpha h\left(x_{\alpha, n}\right)\right), \quad n \geq 0
$$

to solve a nonlinear scalar equation $h(x)=0$. A thorough analysis is realized in [5], it is shown that an iterative processes of above family can always be
applied to solve $h(x)=0$ and this process is faster than Newton's method. They also give a Kantorovich theorem to prove the convergence in the complex plane.

We continue with the analysis of the convergence in the complex plane. We consider the problem of solving the equation

$$
\begin{equation*}
f(z)=0 \tag{1}
\end{equation*}
$$

where $f: D \subseteq \mathbb{C} \rightarrow \mathbb{C}$ is an holomorfic function on some open convex domain D. Let $z_{0}=z_{\alpha, 0} \in D$ and be the family of iterative processes defined in [5] for all $n \geq 0$ by

$$
\begin{equation*}
z_{\alpha, n+1}=F_{\alpha}\left(z_{\alpha, n}\right)=z_{\alpha, n}-\frac{f\left(z_{\alpha, n}\right)}{f^{\prime}\left(z_{\alpha, n}\right)}\left(1+\alpha f\left(z_{\alpha, n}\right)\right), \tag{2}
\end{equation*}
$$

where $\alpha \geq 0$, to solve equation (1). This family of iterations includes the Newton's method as a specific choose of the parameter $(\alpha=0)$.

On the one hand, we study the Kantorovich convergence of family (2) by means of majorizing sequences ([7],[9]) where function f satisfy a Lipschitztype condition. We also give error bound expressions depending on the real parameter α.

Let us denote

$$
\overline{B(z, r)}=\{w \in \mathbb{C} ;|w-z| \leq r\} \quad \text { and } \quad B(z, r)=\{w \in \mathbb{C} ;|w-z|<r\} .
$$

2 The Newton-Kantorovich convergence

Hernández and Salanova [5] study the convergence of the family of methods (2) under standard original Kantorovich conditions [7]. Here we analyse the convergence of family (2) under milder differentiability conditions. The basic assumption made is that the first derivative f^{\prime} of f is Lipschitz continuous in D. Let us assume throughout this section that
$\left(\mathbf{c}_{1}\right)\left|f\left(z_{0}\right)\right|=a$,
$\left(\mathbf{c}_{2}\right)\left|f^{\prime}\left(z_{0}\right)\right|=b$,
($\left.\mathbf{c}_{3}\right)\left|\frac{f^{\prime}(z)-f^{\prime}(w)}{f^{\prime}\left(z_{0}\right)}\right| \leq k|z-w|, z, w \in D, k>0$,
($\left.\mathbf{c}_{4}\right) b-2 a k \geq 0$.
To establish the convergence of (2) and uniqueness of solution, we will need the following two results. The proof of the first one follows inmediately.

Lemma 2.1 Let α be a fixed real number that satisfies $0 \leq \alpha<\frac{b-2 a k}{8 a b}$.
Then we have:
(i) $\left[b+\frac{4 b^{2} \alpha}{k}, \frac{b^{2}}{2 a k}\right] \neq \emptyset$.
(ii) If $N \leq \frac{b^{2}}{2 a k}$, the equation

$$
\begin{equation*}
p(t) \equiv \frac{k N}{2} t^{2}-b t+a=0 \tag{3}
\end{equation*}
$$

has two positive roots r_{1} and $r_{2}\left(r_{1} \leq r_{2}\right)$. Besides $N=\frac{b^{2}}{2 a k}$ if and only if $r_{1}=r_{2}$.

Lemma 2.2 Let p be the polynomial defined in (3). Then the sequence

$$
\begin{gather*}
t_{0}=t_{\alpha, 0}=0 \\
t_{\alpha, n+1}=P_{\alpha}\left(t_{\alpha, n}\right)=t_{\alpha, n}-\frac{p\left(t_{\alpha, n}\right)}{p^{\prime}\left(t_{\alpha, n}\right)}\left(1+\alpha p\left(t_{\alpha, n}\right)\right), \quad n \geq 0 \tag{4}
\end{gather*}
$$

is increasing and converges quadratically to r_{1} for all $0 \leq \alpha<\frac{b-2 a k}{8 a b}$.
Proof. Note that $P_{\alpha}^{\prime}(t) \geq 0$ in $\left[0, r_{1}\right]$ where

$$
P_{\alpha}^{\prime}(t)=L_{p}(t)-\alpha p(t)\left(2-L_{p}(t)\right)
$$

and $L_{p}(t)=\frac{p(t) p^{\prime \prime}(t)}{p^{\prime}(t)^{2}}[4]$. Then by mathematical induction on n, it follows that $t_{\alpha, n} \leq r_{1}, n \geq 0$.

On the other hand, it is easy to prove that $t_{\alpha, n} \leq t_{\alpha, n+1}$ for all $n \in \mathbb{N}$ and consequently the proof is completed.

Now we can state an existence-uniqueness theorem.

Theorem 2.3 Assume that conditions $\left(\mathbf{c}_{1}\right)-\left(\mathbf{c}_{4}\right)$ are satisfied and $0 \leq$ $\alpha<\frac{b-2 a k}{8 a b}$. Then the sequence $\left\{z_{\alpha, n}\right\}$ defined by (2) converges to a solution z^{*} of equation (1) in $\overline{B\left(z_{0}, r_{1}\right)} \cap D$ for $N \in\left[b+\frac{4 b^{2} \alpha}{k}, \frac{b^{2}}{2 a k}\right]$. The limit z^{*} is the unique solution of (1) in $B\left(z_{0}, r\right) \cap D$ where $r=r_{2}+\frac{2(N-b)}{k N}$. Moreover $\left|z^{*}-z_{\alpha, n}\right| \leq r_{1}-t_{\alpha, n}, n \geq 0$.

So as to show the previous theorem we need the following lemma.
Lemma 2.4 The sequence $\left\{t_{\alpha, n}\right\}$ defined by (4) is a majorizing sequence of the sequence $\left\{z_{\alpha, n}\right\}$ given by (2), i.e.

$$
\begin{equation*}
\left|z_{\alpha, n+1}-z_{\alpha, n}\right| \leq t_{\alpha, n+1}-t_{\alpha, n}, \quad n \geq 0 \tag{5}
\end{equation*}
$$

Proof. By mathematical induction, it suffices to show that the following statements are true for all $n \geq 0$:
$\left[\mathbf{I}_{n}\right] f^{\prime}\left(z_{\alpha, n}\right) \neq 0$,
$\left[\mathbf{I I}_{n}\right]\left|\frac{f^{\prime}\left(z_{0}\right)}{f^{\prime}\left(z_{\alpha, n}\right)}\right| \leq \frac{p^{\prime}\left(t_{0}\right)}{p^{\prime}\left(t_{\alpha, n}\right)}$,
$\left[\mathbf{I I I}_{n}\right]\left|f\left(z_{\alpha, n}\right)\right| \leq p\left(t_{\alpha, n}\right)$,
$\left[\mathbf{I V}_{n}\right]\left|\frac{f\left(z_{\alpha, n}\right)}{f^{\prime}\left(z_{0}\right)}\right| \leq-\frac{p\left(t_{\alpha, n}\right)}{p^{\prime}\left(t_{0}\right)}$,
$\left[\mathbf{V}_{n}\right]\left|z_{0}-z_{\alpha, n+1}\right| \leq t_{\alpha, n+1}$.
All the above statements are true for $n=0$ by initial hypotheses $\left(\mathbf{c}_{1}\right)-$ $\left(\mathbf{c}_{4}\right)$. Then we assume that $\left[\mathbf{I}_{k}\right]-\left[\mathbf{V}_{k}\right]$ are true for $k=1,2, \ldots, n$. From general hypotheses and

$$
\left|\frac{f^{\prime}\left(z_{0}\right)-f^{\prime}\left(z_{\alpha, n+1}\right)}{f^{\prime}\left(z_{0}\right)}\right| \leq k\left|z_{0}-z_{\alpha, n+1}\right| \leq \frac{k N}{b} t_{\alpha, n+1}
$$

we obtain

$$
\left|1-\frac{f^{\prime}\left(z_{\alpha, n+1}\right)}{f^{\prime}\left(z_{0}\right)}\right| \leq 1+\frac{p^{\prime}\left(t_{\alpha, n+1}\right)}{p^{\prime}\left(t_{0}\right)}<1 .
$$

Then

$$
\left|\frac{f^{\prime}\left(z_{0}\right)}{f^{\prime}\left(z_{\alpha, n+1}\right)}\right| \leq \frac{p^{\prime}\left(t_{0}\right)}{p^{\prime}\left(t_{\alpha, n+1}\right)}
$$

Therefore $\left[\mathbf{I}_{n+1}\right]$ and $\left[\mathbf{I I}_{n+1}\right]$ are true.
Using Altman technique ([1],[10]) and taking into account (2), we deduce by Taylor's formula that

$$
\begin{gathered}
f\left(z_{\alpha, n+1}\right)=f\left(z_{\alpha, n}\right)+f^{\prime}\left(z_{\alpha, n}\right)\left(z_{\alpha, n+1}-z_{\alpha, n}\right)+\int_{z_{\alpha, n}}^{z_{\alpha, n+1}}\left(f^{\prime}(z)-f^{\prime}\left(z_{\alpha, n}\right)\right) d z \\
=-\alpha f\left(z_{\alpha, n}\right)^{2}+\int_{z_{\alpha, n}}^{z_{\alpha, n+1}}\left(f^{\prime}(z)-f^{\prime}\left(z_{\alpha, n}\right)\right) d z
\end{gathered}
$$

Taking norms, we have

$$
\left|f\left(z_{\alpha, n+1}\right)\right| \leq \alpha p\left(t_{\alpha, n}\right)^{2}+\frac{k b}{2}\left(t_{\alpha, n+1}-t_{\alpha, n}\right)^{2} .
$$

Repeating the same process for the polynomial p, we get

$$
p\left(t_{\alpha, n+1}\right) \leq-\alpha p\left(t_{\alpha, n}\right)^{2}+\frac{k N}{2}\left(t_{\alpha, n+1}-t_{\alpha, n}\right)^{2} .
$$

As $p^{\prime}\left(t_{\alpha, n}\right) \leq p\left(t_{0}\right)=b^{2}$ and $1+\alpha p\left(t_{\alpha, n}\right) \geq 1$ we infer that

$$
p\left(t_{\alpha, n+1}\right)-\left|f\left(z_{\alpha, n+1}\right)\right| \geq\left(\frac{k}{2 b^{2}}(N-b)-2 \alpha\right) p\left(t_{\alpha, n}\right)^{2}
$$

Hence

$$
\begin{equation*}
\left|f\left(z_{\alpha, n+1}\right)\right| \leq p\left(t_{\alpha, n+1}\right) \tag{6}
\end{equation*}
$$

since $N \geq b+\frac{4 b^{2} \alpha}{k}$.
Consequently $\left[\mathbf{I I I}_{n+1}\right]$ is true and $\left[\mathbf{I} \mathbf{V}_{n+1}\right]$ follows from an analogous way. Finally,

$$
\begin{gathered}
\left|z_{\alpha, n+1}-z_{\alpha, n}\right|=\left\lvert\, \frac{f\left(z_{\alpha, n}\right)}{f^{\prime}\left(z_{\alpha, n}\right)}\left(1+\alpha f\left(z_{\alpha, n}\right) \left\lvert\, \leq-\frac{p\left(t_{\alpha, n}\right)}{p^{\prime}\left(t_{\alpha, n}\right)}\left(1+\alpha p\left(t_{\alpha, n}\right)\right)\right.\right.\right. \\
=t_{\alpha, n+1}-t_{\alpha, n}
\end{gathered}
$$

then (5) holds and $\left\{t_{\alpha, n}\right\}$ majorizes $\left\{z_{\alpha, n}\right\}$. Now $\left[\mathbf{V}_{n+1}\right]$ is deduced inmediately.

Proof of theorem 2.3. The fact that the sequence $\left\{t_{\alpha, n}\right\}$ defined by (4) majorizes the sequence $\left\{z_{\alpha, n}\right\}$ given by (2) is a consequence of lemma 2.4. So the convergence of $\left\{t_{\alpha, n}\right\}$ implies the convergence of $\left\{z_{\alpha, n}\right\}$ to a limit z^{*}. When $n \rightarrow \infty$ in (6), we deduce that $F\left(z^{*}\right)=0$.

Moreover, for $q \geq 0$, it follows from (5) that $\left|z_{\alpha, n+q}-z_{\alpha, n}\right| \leq t_{\alpha, n+q}-t_{\alpha, n}$, and making $q \rightarrow \infty$ we obtain $\left|z^{*}-z_{\alpha, n}\right| \leq r_{1}-t_{\alpha, n}, n \geq 0$. Besides $\left|z^{*}-z_{0}\right| \leq r_{1}-t_{0}=r_{1}$.

To show the uniqueness of the solution z^{*}. Assume that there exists another solution w^{*} of equation (1) in $B\left(z_{0}, r\right)$ where $r=r_{2}+\frac{2(N-b)}{k N}$. Following Argyros and Chen ([2],[3]), we have

$$
f\left(w^{*}\right)-f\left(z^{*}\right)=\left(w^{*}-z^{*}\right) \int_{0}^{1} f^{\prime}\left(z^{*}+t\left(w^{*}-z^{*}\right)\right) d t=0
$$

and

$$
\begin{gathered}
\left|1-f^{\prime}\left(z_{0}\right)^{-1} \int_{0}^{1} f^{\prime}\left(z^{*}+t\left(w^{*}-z^{*}\right)\right) d t\right| \\
\leq k\left[\left|z_{0}-z^{*}\right| \int_{0}^{1}(1-t) d t+\left|z_{0}-w^{*}\right| \int_{0}^{1} t d t\right]<k\left(\frac{r_{1}+r}{2}\right)=1
\end{gathered}
$$

Therefore $w^{*}=z^{*}$ follows from $\int_{0}^{1} f^{\prime}\left(z^{*}+t\left(w^{*}-z^{*}\right)\right) d t \neq 0$.
Notice that Hernández and Salanova [5] give uniqueness of solution of equation (1) in the ball $\overline{B\left(z_{0}, \frac{2 a}{b}(2-\sqrt{2})\right)}$ for the family (2).

Now we get error expressions for the sequence $\left\{t_{\alpha, n}\right\}$ defined by (4). Following Ostrowski [8], we can deduce following error estimates for $r_{1}-t_{\alpha, n}, n \geq$ 0 .

Theorem 2.5 Let p be the polynomial given in (3). Assume that p has two positive roots r_{1} and $r_{2}\left(r_{1} \leq r_{2}\right)$. Let $\left\{t_{\alpha, n}\right\}$ be the sequence given by (4).
(a) If $r_{1}<r_{2}$, let $\theta_{\alpha}=\frac{r_{1}}{r_{2}} \sqrt{\rho_{\alpha}}$ and $\Delta_{\alpha}=\frac{r_{1}}{r_{2}} \sqrt{\sigma_{\alpha}}$. Then

$$
\frac{\left(r_{2}-r_{1}\right) \Delta_{\alpha}^{2^{n}}}{\sqrt{\sigma_{\alpha}}-\Delta_{\alpha}^{2^{n}}} \leq r_{1}-t_{\alpha, n} \leq \frac{\left(r_{2}-r_{1}\right) \theta_{\alpha}^{2^{n}}}{\sqrt{\rho_{\alpha}}-\theta_{\alpha}^{2^{n}}}, \quad n \geq 0
$$

where $\rho_{\alpha}=\frac{1}{2}\left[2-\alpha k N\left(r_{2}-r_{1}\right)^{2}\right], \sigma_{\alpha}=\frac{2-\alpha k N r_{2}^{2}}{2-\alpha k N r_{1}^{2}}, \theta_{\alpha}<1$ and $\Delta_{\alpha}<1$.
(b) If $r_{1}=r_{2}$, let $\tau_{\alpha}=\frac{1}{4}\left(2-\alpha k N r_{1}^{2}\right)$. Then

$$
r_{1} \tau_{\alpha}^{n} \leq r_{1}-t_{\alpha, n} \leq \frac{r_{1}}{2^{n}}, \quad n \geq 0
$$

where $\tau_{\alpha}<1$.
Proof. Let us write $a_{\alpha, n}=r_{1}-t_{\alpha, n}$ and $b_{\alpha, n}=r_{2}-t_{\alpha, n}$. Hence

$$
p\left(t_{\alpha, n}\right)=\frac{k N}{2} a_{\alpha, n} b_{\alpha, n} \quad \text { and } \quad p^{\prime}\left(t_{\alpha, n}\right)=-\frac{k N}{2}\left(a_{\alpha, n}+b_{\alpha, n}\right) .
$$

By (4) we obtain

$$
\begin{equation*}
a_{\alpha, n}=a_{\alpha, n-1}^{2} \frac{2-\alpha k N b_{\alpha, n-1}^{2}}{2\left(a_{\alpha, n-1}+b_{\alpha, n-1}\right)} \tag{7}
\end{equation*}
$$

and

$$
b_{\alpha, n}=b_{\alpha, n-1}^{2} \frac{2-\alpha k N a_{\alpha, n-1}^{2}}{2\left(a_{\alpha, n-1}+b_{\alpha, n-1}\right)} .
$$

If $r_{1}<r_{2}$, denote $\delta_{\alpha, n}=\frac{a_{\alpha, n}}{b_{\alpha, n}}$ to get

$$
\delta_{\alpha, n}=\delta_{\alpha, n-1}^{2} \frac{2-\alpha k N\left(r_{2}-t_{\alpha, n-1}\right)^{2}}{2-\alpha k N\left(r_{1}-t_{\alpha, n-1}\right)^{2}}=\delta_{\alpha, n-1}^{2} \phi_{\alpha}\left(t_{\alpha, n-1}\right)
$$

Taking into account that the function

$$
\phi_{\alpha}(t)=\frac{2-\alpha k N\left(r_{2}-t\right)^{2}}{2-\alpha k N\left(r_{1}-t\right)^{2}}
$$

is nondecreasing in $\left[0, r_{1}\right]$ for all $\alpha \geq 0$, we have

$$
\begin{equation*}
\sigma_{\alpha}=\phi_{\alpha}(0) \leq \phi_{\alpha}(t) \leq \phi_{\alpha}\left(r_{1}\right)=\rho_{\alpha} . \tag{8}
\end{equation*}
$$

Therefore

$$
\delta_{\alpha, n} \leq \rho_{\alpha} \delta_{\alpha, n-1} \leq \ldots \leq \rho_{\alpha}^{\frac{2^{n}-1}{2}} \delta_{\alpha, 0}^{2^{n}}
$$

$$
\delta_{\alpha, n} \geq \sigma_{\alpha} \delta_{\alpha, n-1} \leq \ldots \leq \sigma_{\alpha}^{\frac{2^{n}-1}{2}} \delta_{\alpha, 0}^{2^{n}}
$$

and so the first part holds.
If $r_{1}=r_{2}$, then $a_{\alpha, n}=b_{\alpha, n}$. By (7) we deduce

$$
a_{\alpha, n}=\frac{a_{\alpha, n-1}}{4}\left(2-\alpha k N a_{\alpha, n-1}^{2}\right) .
$$

Repeating an analogous process to the first part we get

$$
a_{\alpha, n} \leq \frac{a_{\alpha, n-1}}{2} \leq \ldots \leq \frac{a_{\alpha, 0}}{2^{n}}
$$

and

$$
a_{\alpha, n} \geq \tau_{\alpha} a_{\alpha, n-1} \geq \ldots \geq \tau_{\alpha}^{n} a_{\alpha, 0}
$$

Thus the second part also holds.
From $\sigma_{\alpha} \geq 0$, (8) and $\rho_{\alpha}<1$, it follows that $\Delta_{\alpha}<\theta_{\alpha}<1$. Besides it is obvious that $\tau_{\alpha}<1$. So the proof is completed.

Remark. We give now an optimization result by means of asymptotic error constant [6]. Let us denote the assumptotic error constant of sequence (4) by $C_{\alpha}=\left|\frac{P_{\alpha}^{\prime \prime}\left(r_{1}\right)}{2}\right|$, where P_{α} is defined in (4). Then, from $N \geq b+\frac{4 b^{2} \alpha}{k}$ it follows that

$$
C_{\alpha}=-\frac{k N-2 \alpha\left(k N r_{1}-b\right)^{2}}{k N r_{1}-b} .
$$

It is easy to check that function

$$
h_{\alpha}(N)=-\frac{k N-2 \alpha\left(k N r_{1}-b\right)^{2}}{k N r_{1}-b}
$$

is nondecreasing. Then the optime value of N in $\left[b+\frac{4 b^{2} \alpha}{k}, \frac{b^{2}}{2 a k}\right]$ is obtained for $N=b+\frac{4 b^{2} \alpha}{k}$. Therefore we will consider $N=b+\frac{4 b^{2} \alpha}{k}$ in practical situations.

Numerical result. To illustrate theorem 2.3, let us consider the equation $f(z)=0$ where $f(z)=e^{z}-1$ is an holomorfic function in \mathbb{C}. If we choose $D=B(0,0.5)$ and $z_{0}=0.2(1+i)$, then

$$
a=\left|f\left(z_{0}\right)\right|=0.31259, \quad b=\left|f^{\prime}\left(z_{0}\right)\right|=1.2214,
$$

$$
k=1.34986 \quad \text { and } \quad 0 \leq \alpha<0.123592
$$

Taking into account $\alpha=0.1$, we have $N=1.66347$. Therefore, from the definition (3),

$$
p(t)=1.12273 t^{2}-1.2214 t+0.31259 .
$$

This polynomial has two real roots: $r_{1}=0.411825$ and $r_{2}=0.676065$. Hence, by theorem 2.3, the sequence of iterates $\left\{z_{0.1, n}\right\}$ given by (2) converges to the solution $z^{*}=0$ of $f(z)=0$ in $\overline{B\left(z_{0}, 0.411825\right)} \cap D$, see Table 1. Moreover the solution $z^{*}=0$ is unique in $B\left(z_{0}, 1.06981\right) \cap D$.

Notice that Hernández and Salanova [5] would obtain uniqueness of the solution $z^{*}=0$ in $\overline{B\left(z_{0}, 0.299837\right)} \cap D$. Consequently, the uniqueness domain has been increased considerablely.

Finally, observe that the sequence $\left\{z_{0.1, n}\right\}$ converges to $z^{*}=0$ faster than the sequences of Newton's method $\left\{z_{0, n}\right\}$, see Tables 1 and 2 .

n	$z_{0.1, n}$
0	$0.200000000000000+0.200000000000000 \mathrm{i}$
1	$0.002463980472679+0.029343451406702 \mathrm{i}$
2	$-0.000340904885976+0.000061954839567 \mathrm{i}$
3	$0.000000044957044-0.000000016900126 \mathrm{i}$
4	$0.000000000000000+0.000000000000000 \mathrm{i}$

Table 1: Process iterative (2)

n	$z_{0, n}$
0	$0.200000000000000+0.200000000000000 \mathrm{i}$
1	$0.002410647342520+0.037343309184660 \mathrm{i}$
2	$-0.000692598436544+0.000098570978707 \mathrm{i}$
3	$0.000000235040194-0.000000068293593 \mathrm{i}$
4	$0.000000000000025-0.000000000000016 \mathrm{i}$

Table 2: Newton's method

References

[1] M. Altman, Concerning the Method of Tangent Hyperbolas for Operator Equations, Bull. Acad. Pol. Sci., Serie Sci. Math., Ast. et Phys. 9, (1961), 633-637.
[2] I.K. Argyros and D. Chen, Results on the Chebyshev Method in Banach Spaces, Proyecciones 12, 2, (1993), 119-128.
[3] I.K. Argyros and D. Chen, Parameter-Based Algorithms for Approximating Local Solution of Nonlinear Complex Equations, Proyecciones 33, 1, (1994), 53-61.
[4] M.A. Hernández, A Note on Halley's Method, Numer. Math. 59, 3, (1991), 273-276.
[5] M.A. Hernández and M.A. Salanova, A Family of Newton Type Iterative Processes, Intern. J. Computer Math. 51, (1994), 205-214.
[6] A.S. Housholder, The Numerical Treatment of a Single Nonlinear Equation, New York, Mc-Graw Hill, 1970.
[7] L.V. Kantorovich and G.P. Akilov, Functional Analysis, Oxford, Pergamon Press, 1982.
[8] A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, London, Academic Press, 1943.
[9] W.C. Rheinboldt, A Unified Convergence Theory for a Class of Iterative Processes, SIAM J. Numer. Anal. 5, (1968), 42-63.
[10] T. Yamamoto, On the Method of Tangent Hyperbolas in Banach Spaces, J. Comput. Appl. Math. 21, (1988), 75-86.

